FLIGHT SUMMARY REPORT

Flight Number: 99-131

Calendar/Julian Date: 21 September 1999 • 264

Sensor Package: Wild Heerbrugg RC-10
Airborne Visible and Infrared Imaging Spectrometer (AVIRIS)

Area(s) Covered: White Mountains, CA
Panamint Springs, CA

Investigator(s): Ernst, Stanford University
Duke, South Dakota School of Mines and Geology

Aircraft #: 806

SENSOR DATA

Accession #: 05399

Sensor ID #: 034 099

Sensor Type: RC-10 AVIRIS

Focal Length: 12”
304.66mm

Film Type: Aerochrome IR
SO-134

Filtration: Wratten 12

Spectral Band: 510-900nm

f Stop: 11

Shutter Speed: 1/275

of Frames: 126

% Overlap: 60

Quality: Excellent

Remarks: Camera data block failed. Time derived from flight track.
Airborne Science and Applications Program

The Airborne Science Branch at NASA’s Dryden Flight Research Center, Edwards, California, operates two ER-2 high altitude aircraft in support of NASA earth science research. The ER-2s are used as readily deployable high altitude sensor platforms to collect remote sensing and in situ data on earth resources, celestial phenomena, atmospheric dynamics, and oceanic processes. Additionally, these aircraft are used for electronic sensor research and development and satellite investigative support.

The ER-2s are flown from various deployment sites in support of scientific research sponsored by NASA and other federal, state, university, and industry investigators. Data are collected from deployment sites in Kansas, Texas, Virginia, Florida, and Alaska. Cooperative international scientific projects have deployed the aircraft to sites in Great Britain, Australia, Chile, Fiji, New Zealand, and Norway.

Photographic and digital imaging sensors are flown aboard the ER-2s in support of research objectives defined by the sponsoring investigators. High resolution mapping cameras and digital multispectral imaging sensors are utilized in a variety of configurations in the ER-2s' four pressurized experiment compartments. The following provides a description of the digital multispectral sensor(s) and camera(s) used for data collection during this flight.

Airborne Visible and Infrared Imaging Spectrometer

The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) is the second in the series of imaging spectrometer instruments developed at the Jet Propulsion Laboratory (JPL) for earth remote sensing. This instrument uses scanning optics and four spectrometers to image a 614 pixel swath simultaneously in 224 contiguous spectral bands (0.4-2.4 mm).

AVIRIS parameters are as follows:

- **IFOV:** 1 mrad
- **Ground Resolution:** 66 feet (20 meters) at 65,000 feet
- **Total Scan Angle:** 30°
- **Swath Width:** 5.7 nmi (10.6 km) at 65,000 feet
- **Spectral Coverage:** 0.41-2.45 mm
- **Pixels/Scan Line:** 614
- **Number of Spectral Bands:** 224
- **Digitization:** 10-bits
- **Data Rate:** 17 MBPS

<table>
<thead>
<tr>
<th>Spectrometer</th>
<th>Wavelength Range</th>
<th>Number of Bands</th>
<th>Sampling Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.41 - 0.70 mm</td>
<td>31</td>
<td>9.4 nm</td>
</tr>
<tr>
<td>2</td>
<td>0.68 - 1.27 mm</td>
<td>63</td>
<td>9.4 nm</td>
</tr>
<tr>
<td>3</td>
<td>1.25 - 1.86 mm</td>
<td>63</td>
<td>9.7 nm</td>
</tr>
<tr>
<td>4</td>
<td>1.84 - 2.45 mm</td>
<td>63</td>
<td>9.7 nm</td>
</tr>
</tbody>
</table>

All AVIRIS data is decommutated and archived at JPL and not currently available for public distribution. For further information contact Rob Green at Jet Propulsion Laboratory, 4800 Oak Grove Drive, Mail Stop 183-501, Pasadena, California 91109-8099.
Camera Systems

Various camera systems and films are used for photographic data collection. Film types include high definition color infrared, natural color, and black and white emulsions. Available photographic systems are as follows:

- **Wild-Heerbrugg RC-10 metric mapping camera**
 - 9 x 9 inch film format
 - 6 inch focal length lens provides area coverage of 16 x 16 nautical miles from 65,000 feet
 - 12 inch focal length lens provides area coverage of 8 x 8 nautical miles from 65,000 feet

- **Hycon HR-732 large scale mapping camera**
 - 9 x 18 inch film format
 - 24 inch focal length lens provides area coverage of 4 x 8 nautical miles from 65,000 feet

- **IRIS II Panoramic camera**
 - 4.5 x 34.7 inch film format
 - 24 inch focal length lens
 - 90 degree field of view provides area coverage of 2 x 21.4 nautical miles from 65,000 feet

Data Availability

The U.S. Geological Survey's EROS Data Center at Sioux Falls, South Dakota serves as the archive and product distribution facility for Airborne Science Program aircraft acquired photographic and digital imagery. The photographic archive consists of photography acquired by the program from 1971 to April 1996. For information regarding photography and digital data (including areas of coverage, products, and product costs) contact EROS Data Center, Customer Services, Sioux Falls, South Dakota 57198 (Telephone: 605-594-6151).

As of April 1996 the EROS Data Center no longer receives an archive copy of newly acquired Airborne Science Program photography. Original photography is archived with the Airborne Sensor Facility at Ames Research Center. A user copy of the photography is provided to the principal investigators for each flight. Principal investigators are cited on the first page of their respective flight summary reports. For information regarding photography acquired from April 1996 to the present contact the Airborne Sensor Facility as follows:

Flight Documentation and Data Archive Searches

The following is the web site for flight documentation as published by the Airborne Sensor Facility at NASA Ames Research Center:

http://asapdata.arc.nasa.gov/er-2fsr.html

Additional information regarding flight documentation to include data archive searches, data availability, sensor parameters, and areas of coverage may be obtained from the following:

Airborne Sensor Facility
MS 240-6
NASA Ames Research Center
Moffett Field, CA 94035-1000
Telephone: (650)604-6252 (FAX 4987)
CAMERA FLIGHT LINE DATA
FLIGHT NO. 99-131

<table>
<thead>
<tr>
<th>Accession #</th>
<th>05399</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor #</td>
<td>034</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Check Points</th>
<th>Frame Numbers</th>
<th>Time (GMT-hr, min, sec)</th>
<th>Altitude, MSL feet/meters</th>
<th>Cloud Cover/Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - B</td>
<td>3024-3029</td>
<td>17:57:00 - 17:59:20</td>
<td>65000/19812</td>
<td>Clear</td>
</tr>
<tr>
<td>C - D</td>
<td>3030-3040</td>
<td>18:06:00 - 18:10:40</td>
<td>66000/20117</td>
<td>Clear</td>
</tr>
<tr>
<td>E - F</td>
<td>3041-3047</td>
<td>18:17:00 - 18:19:48</td>
<td>66000/20117</td>
<td>Clear</td>
</tr>
<tr>
<td>G - H</td>
<td>3048-3073</td>
<td>18:28:00 - 18:39:40</td>
<td>66000/20117</td>
<td>Minor-10% Cumulus, frames 3049-3061; minor-20% cumulus, frames 3064-3072</td>
</tr>
<tr>
<td>I - J</td>
<td>3074-3097</td>
<td>18:46:00 - 18:56:21</td>
<td>64000/19507</td>
<td>Minor-60% Cumulus, frames 3078-3094; 10-30% cumulus, frames 3096-3097</td>
</tr>
<tr>
<td>K - L</td>
<td>3098-3123</td>
<td>19:02:00 - 19:13:40</td>
<td>64000/19507</td>
<td>Minor-10% Cumulus, frames 3098-3101 10-30% cumulus, frames 3109-3113 and 3118-3123</td>
</tr>
<tr>
<td>M - N</td>
<td>3124-3149</td>
<td>19:16:00 - 19:27:17</td>
<td>64000/19507</td>
<td>10 cumulus, frames 3135-3137 and 3144-3145</td>
</tr>
</tbody>
</table>