FLIGHT SUMMARY REPORT

Flight #: 92-071
Date: 14 March 1992
Sensor Package: Stormfest Instrument Package
Wild-Heerbrug RC-10
Multispectral Atmospheric Mapping Sensor (MAMS)
Advanced Microwave Precipitation Radiometer (AMPR)
Lightning Instrument Package (LIP)
Microwave Thermal Sampler (MTS)
High-Resolution Interferometer Sounder (HIS)

Area(s) Covered: Texas, Oklahoma, Kansas

Investigator(s): Heymsfield, NASA-GSFC
Flight Request: 2P22029
Aircraft #: 706
Julian Date: 074

SENSOR DATA

<table>
<thead>
<tr>
<th>Accession #:</th>
<th>04390</th>
<th>036</th>
<th>102</th>
<th>105</th>
<th>106</th>
<th>110</th>
<th>083</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor ID #:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor Type:</td>
<td>RC-10</td>
<td>MAMS</td>
<td>AMPR</td>
<td>LIP</td>
<td>MTS</td>
<td>HIS</td>
<td></td>
</tr>
<tr>
<td>Focal Length:</td>
<td>6"</td>
<td>153.19 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Film Type:</td>
<td>Panatomic-X</td>
<td>Aerographic II</td>
<td>2412</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtration:</td>
<td>2.2 AV + Wratten 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectral Band:</td>
<td>510-700 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f Stop:</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shutter Speed:</td>
<td>1/300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of Frames:</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Overlap:</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality:</td>
<td>Excellent</td>
<td>Good</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Airborne Science and Applications Program

The Airborne Science and Applications Program (ASAP) is supported by three ER-2 high altitude Earth Resources Survey aircraft. These aircraft are operated by the High Altitude Missions Branch at NASA-Ames Research Center, Moffett Field, California. The ER-2s are used as readily deployable high altitude sensor platforms to collect remote sensing and in situ data on earth resources, celestial phenomena, atmospheric dynamics, and oceanic processes. Additionally, these aircraft are used for electronic sensor research and development and satellite investigative support.

The ER-2s are flown from various deployment sites in support of scientific research sponsored by NASA and other federal, state, university, and industry investigators. Data are collected from deployment sites in Kansas, Texas, Virginia, Florida, and Alaska. Cooperative international scientific projects have deployed the aircraft to sites in Great Britain, Australia, Chile, and Norway.

Photographic and digital imaging sensors are flown aboard the ER-2s in support of research objectives defined by the sponsoring investigators. High resolution mapping cameras and digital multispectral imaging sensors are utilized in a variety of configurations in the ER-2s' four pressurized experiment compartments. The following provides a description of the digital multispectral sensors and camera system(s) used for data collection during this flight.

Multispectral Atmospheric Mapping Sensor

The Multispectral Atmospheric Mapping Sensor (MAMS) is a modified Daedalus Scanner flown aboard the ER-2 aircraft. It is designed to study weather related phenomena including storm system structure, cloud-top temperatures, and upper atmosphere water vapor. The scanner retains the eight silicon-detector channels in the visible/near-infrared region found on the Daedalus Thematic Mapper Simulator, with the addition of four channels in the thermal infrared relating to specific water vapor features. The specific bands are as follows:

<table>
<thead>
<tr>
<th>Daedalus Channel</th>
<th>Wavelength, (\mu m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LSBs for Channels 9-12</td>
</tr>
<tr>
<td>2</td>
<td>0.45 - 0.52</td>
</tr>
<tr>
<td>3</td>
<td>0.52 - 0.60</td>
</tr>
<tr>
<td>4</td>
<td>0.57 - 0.67</td>
</tr>
<tr>
<td>5</td>
<td>0.60 - 0.73</td>
</tr>
<tr>
<td>6</td>
<td>0.65 - 0.83</td>
</tr>
<tr>
<td>7</td>
<td>0.72 - 0.99</td>
</tr>
<tr>
<td>8</td>
<td>0.83 - 1.05</td>
</tr>
<tr>
<td>9</td>
<td>3.55 - 3.93 low range</td>
</tr>
<tr>
<td>10</td>
<td>3.55 - 3.93 high range</td>
</tr>
<tr>
<td>11</td>
<td>10.3 - 12.1</td>
</tr>
<tr>
<td>12</td>
<td>12.5 - 12.8</td>
</tr>
</tbody>
</table>

Sensor specifications are as follows:

<table>
<thead>
<tr>
<th>IFOV:</th>
<th>5.0 mrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Resolution:</td>
<td>325 feet (99 meters) at 65,000 feet</td>
</tr>
<tr>
<td>Total Scan Angle:</td>
<td>86°</td>
</tr>
<tr>
<td>Swath Width:</td>
<td>20 nmi (37 km) at 65,000 feet</td>
</tr>
<tr>
<td>Pixels/Scan Line:</td>
<td>716</td>
</tr>
<tr>
<td>Scan Rate:</td>
<td>6.25 scans/second</td>
</tr>
</tbody>
</table>
Ground Speed: 400 kts (206 m/second)
Digitization: 8-bit channels 2-8
10-bit channels 9-12

The data will not be archived at EROS Data Center because this is an experimental system with low spatial resolution and unique spectral characteristics. As all scenes will be primarily cloud-covered there would be little terrestrial application for the data. Further information concerning the data can be obtained from principal investigator, Gregory S. Wilson, Atmospheric Effects Branch, George C. Marshall Space Flight Center, National Aeronautics and Space Administration, Marshall Space Flight Center, Alabama 35812-5001.

Advanced Microwave Precipitation Radiometer

The Advanced Microwave Precipitation Radiometer (AMPR) is a scanning passive microwave radiometer operating at frequencies of 10, 19, 37, and 85 GHz. The AMPR is configured to fit into the Q-bay of the ER-2 and scans cross-track +/− 45° to the left and right of nadir. The instrument's principle use is for gathering microwave image data of cloud water and precipitation primarily over the ocean. Some data collected also will be used for studies of vegetation, ground moisture, sea surface state, and snow cover. The AMPR is sponsored by Dr. Roy W. Spencer, NASA-MSFC, ES43, Huntsville, Alabama 35812, FTS 824-1686.

Lightning Instrument Package

The Lightning Instrument Package (LIP) comprises a set of optical and electrical sensors with a wide range of temporal, spatial, and spectral resolution to observe lightning and investigate electrical environments within and above thunderstorms. The instruments provide measurements of the air conductivity and vertical electric field above thunderstorms and provide estimates of the storm electric currents. In addition, LIP will detect total storm lightning and differentiate between intracloud and cloud-to-ground discharges. This data will be used in studies of lightning/storm structure and lightning precipitation relationships. The LIP is sponsored by Dr. Richard Blakeslee, NASA-MSFC, ES43, Huntsville, Alabama 35812, FTS 824-1651.

MIT Millimeter-wave Temperature Sounder

The Millimeter-wave Temperature Sounder (MTS) is a dual-band microwave radiometer system for the measurement of atmospheric temperature and other phenomena affecting transmission in the microwave absorption bands of molecular oxygen. MTS data has been used to produce images of temperature and precipitation structure, to infer precipitation cell top altitudes and to detect atmospheric waves.

The instrument is capable of either downward- or upward-viewing operation on the ER-2 as well as ground-based operation. One radiometer is an eight channel scanning spectrometer with its radiometer centered on the 118.75 GHz oxygen line. The second radiometer is a single-channel (Ch. 0) nadir (or zenith) viewing system with its local oscillator tunable under computer control from 52 th 54 GHz. Characteristics of the two radiometers are as follows:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Center freq. (MHz)</th>
<th>Width (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>115</td>
<td>170</td>
</tr>
</tbody>
</table>

Single Channel Radiometer
<table>
<thead>
<tr>
<th>Channel</th>
<th>Center freq. (MHz)</th>
<th>Width (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>660</td>
<td>170</td>
</tr>
<tr>
<td>2</td>
<td>840</td>
<td>210</td>
</tr>
<tr>
<td>3</td>
<td>1040</td>
<td>240</td>
</tr>
<tr>
<td>4</td>
<td>1260</td>
<td>220</td>
</tr>
<tr>
<td>5</td>
<td>1470</td>
<td>240</td>
</tr>
<tr>
<td>6</td>
<td>1670</td>
<td>220</td>
</tr>
<tr>
<td>7</td>
<td>1900</td>
<td>270</td>
</tr>
<tr>
<td>8</td>
<td>500</td>
<td>125</td>
</tr>
</tbody>
</table>

For further information contact Michael Schwarz, Massachusetts Institute of Technology, MIT-RLE Mail Stop 26-357, 77 Massachusetts Ave., Cambridge, MA 02139.

High-Resolution Interferometer Sounder

The High-Resolution Interferometer Sounder (HIS) measures upwellng infrared spectral radiance at the aircraft altitude with high absolute accuracy using a passive Michelson interferometer and precision onboard blackbody calibration sources. The instrument has a single nadir staring field of view with observed spectra obtained every six seconds. The spectra cover the range 16.6 microns to 3.3 microns with a spectral resolution of 0.3 to 0.5 cm⁻¹. The primary use of the instrument is as an atmospheric sounder of temperature and water vapor. The spectra also contain important information on trace gases and surface properties. The HIS was developed by the University of Wisconsin at Madison and is a prototype instrument for advanced infrared satellite sounders.

Camera Systems

Various camera systems and films are used for photographic data collection. Film types include high definition color infrared, natural color, and black and white emulsions. Available photographic systems are as follows:

- **Wild-Heerbrug RC-10 metric mapping camera**
 - 9 x 9 inch film format
 - 6 inch focal length lens provides area coverage of 16 x 16 nautical miles from 65,000 feet
 - 12 inch focal length lens provides area coverage of 8 x 8 nautical miles from 65,000 feet

- **Hycon HR-732 large scale mapping camera**
 - 9 x 18 inch film format
 - 24 inch focal length lens provides area coverage of 4 x 8 nautical miles from 65,000 feet

- **IRIS II Panoramic camera**
 - 4.5 x 34.7 inch film format
 - 24 inch focal length lens
 - 90 degree field of view provides area coverage of 2 x 21.4 nautical miles from 65,000 feet
The U.S. Geological Survey's EROS Data Center at Sioux Falls, South Dakota serves as the archive and product distribution facility for NASA-Ames aircraft acquired photographic and digital imagery. For information regarding photography and digital data (including areas of coverage, products, and product costs) contact EROS Data Center, Customer Services, Sioux Falls, South Dakota 57198 (Telephone: (605) 594-6151).

Additional information regarding ER-2 acquired photographic and digital data is available through the Aircraft Data Facility at Ames Research Center. For specific information regarding flight documentation, sensor parameters, and areas of coverage contact the Aircraft Data Facility, NASA-Ames Research Center, Mail Stop 240-6, Moffett Field, California 94035-1000 (Telephone: (415) 604-6252).
CAMERA FLIGHT LINE DATA
FLIGHT NO. 92-071

<table>
<thead>
<tr>
<th>Check Points</th>
<th>Frame Numbers</th>
<th>Time (GMT-hr, min, sec)</th>
<th>Altitude, MSL feet/meters</th>
<th>Cloud Cover/Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - B</td>
<td>0945-0966</td>
<td>21:00:27</td>
<td>21:20:12</td>
<td>65000/19800</td>
</tr>
<tr>
<td>B</td>
<td>0967</td>
<td>21:21:09</td>
<td>—</td>
<td>"</td>
</tr>
<tr>
<td>B - C</td>
<td>0968-0995</td>
<td>21:22:05</td>
<td>21:47:26</td>
<td>"</td>
</tr>
</tbody>
</table>

10% thin cirrus (frames 0959-0960)
Oblique frame in turn
10% cirrus (frame 0971; 10-80% cirrus and cumulus (frames 0974-0995)