FLIGHT SUMMARY REPORT

Flight #: 91-122
Date: 24 June 1991
Sensor Package: IRIS II Panoramic Camera
Wild-Heerbrug RC-10
Large Area Collector (LAC)
Area(s) Covered: Virginia

Investigator(s): Acciavatti, USDA Forest Service
Flight Request: 90R258

Aircraft #: 709
Julian Date: 175

SENSOR DATA

Accession #: 04236 04237
Sensor ID #: 070 076
Sensor Type: IRIS II RC-10
Focal Length: 24" 12"
609.6 mm 304.89 mm
Film Type: High Definition High Definition
Aerochrome IR Aerochrome IR
SO-131 SO-131
Filtration: cc.20C cc.20B
Spectral Band: 510-900 nm 510-900 nm
f Stop: 3.5 4
Shutter Speed: 1/250 1/125
of Frames: 405 144
% Overlap: 60 60
Quality: Excellent Excellent
Remarks: Exposed @ 1449,
closed @ 1753, exposure time
3 hrs. 4 min.
Airborne Science and Applications Program

The Airborne Science and Applications Program (ASAP) is supported by three ER-2 high altitude Earth Resources Survey aircraft. These aircraft are operated by the High Altitude Missions Branch at NASA-Ames Research Center, Moffett Field, California. The ER-2s are used as readily deployable high altitude sensor platforms to collect remote sensing and in situ data on earth resources, celestial phenomena, atmospheric dynamics, and oceanic processes. Additionally, these aircraft are used for electronic sensor research and development and satellite investigative support.

The ER-2s are flown from various deployment sites in support of scientific research sponsored by NASA and other federal, state, university, and industry investigators. Data are collected from deployment sites in Kansas, Texas, Virginia, Florida, and Alaska. Cooperative international scientific projects have deployed the aircraft to sites in Great Britain, Australia, Chile, and Norway.

Photographic and digital imaging sensors are flown aboard the ER-2s in support of research objectives defined by the sponsoring investigators. High resolution mapping cameras and digital multispectral imaging sensors are utilized in a variety of configurations in the ER-2s’ four pressurized experiment compartments. The following provides descriptions of the camera systems flown onboard the ER-2s.

Camera Systems

Various camera systems and films are used for photographic data collection. Film types include high definition color infrared, natural color, and black and white emulsions. Available photographic systems are as follows:

- Wild-Heerbrug RC-10 metric mapping camera
 - 9 x 9 inch film format
 - 6 inch focal length lens provides area coverage of 16 x 16 nautical miles from 65,000 feet
 - 12 inch focal length lens provides area coverage of 8 x 8 nautical miles from 65,000 feet

- Hycon HR-732 large scale mapping camera
 - 9 x 18 inch film format
 - 24 inch focal length lens provides area coverage of 4 x 8 nautical miles from 65,000 feet

- IRIS II Panoramic camera
 - 4.5 x 34.7 inch film format
 - 24 inch focal length lens
 - 90 degree field of view provides area coverage of 2 x 21.4 nautical miles from 65,000 feet

The U.S. Geological Survey’s EROS Data Center at Sioux Falls, South Dakota serves as the archive and product distribution facility for NASA-Ames aircraft acquired photographic and digital imagery. For information regarding photography and digital data (including areas of coverage, products, and product costs) contact EROS Data Center, Customer Services, Sioux Falls, South Dakota 57198 (Telephone: (605) 594-6151).

Additional information regarding ER-2 acquired photographic and digital data is available through the Aircraft Data Facility at Ames Research Center. For specific information regarding flight documentation, sensor parameters, and areas of coverage contact the Aircraft Data Facility, NASA-Ames Research Center, Mail Stop 240-6, Moffett Field, California 94035-1000 (Telephone: (415) 604-6252).
CAMERA FLIGHT LINE DATA
FLIGHT NO. 91-122

Accession # 04236
Sensor # 070

<table>
<thead>
<tr>
<th>Check Points</th>
<th>Frame Numbers</th>
<th>Time (GMT-hr, min, sec)</th>
<th>Altitude, MSL feet/meters</th>
<th>Cloud Cover/Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>START</td>
<td>END</td>
<td></td>
</tr>
<tr>
<td>A - B</td>
<td>0001-0114</td>
<td>8:20:30</td>
<td>8:38:14</td>
<td>65000/19800</td>
</tr>
<tr>
<td>C - D</td>
<td>0115-0221</td>
<td>8:43:32</td>
<td>9:00:10</td>
<td>"</td>
</tr>
<tr>
<td>E - F</td>
<td>0222-0288</td>
<td>9:04:59</td>
<td>9:15:17</td>
<td>"</td>
</tr>
<tr>
<td>G - H</td>
<td>0289-0352</td>
<td>9:20:06</td>
<td>9:29:56</td>
<td>"</td>
</tr>
<tr>
<td>K - L</td>
<td>0383-0405</td>
<td>10:41:18</td>
<td>10:43:45</td>
<td>"</td>
</tr>
</tbody>
</table>
CAMERA FLIGHT LINE DATA
FLIGHT NO. 91-122

Accession # 04237
Sensor # 076

<table>
<thead>
<tr>
<th>Check Points</th>
<th>Frame Numbers</th>
<th>Time (GMT-hr, min, sec)</th>
<th>Altitude, MSL feet/meters</th>
<th>Cloud Cover/Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - B</td>
<td>5596-5633</td>
<td>15:23:04 15:40:34</td>
<td>65000/19800</td>
<td>10% minor cumulus (frames 5612-5613, 5617-5620, 5622-5631); 20% cumulus (frames 5632-5633)</td>
</tr>
<tr>
<td>C - D</td>
<td>5634-5670</td>
<td>15:45:48 16:02:22</td>
<td>"</td>
<td>10% cumulus (frames 5634-5637); 10% cumulus and cirrus (frames 5638-5649); 10% thin cirrus (frames 5657-5663)</td>
</tr>
<tr>
<td>E - F</td>
<td>5671-5693</td>
<td>16:07:06 16:17:02</td>
<td>"</td>
<td>10% thin cirrus and cumulus (frames 5676-5683, 5688-5693)</td>
</tr>
<tr>
<td>G - H</td>
<td>5694-5716</td>
<td>16:22:05 16:32:01</td>
<td>"</td>
<td>10% cumulus (frames 5694-5716)</td>
</tr>
<tr>
<td>I - J</td>
<td>5717-5728</td>
<td>17:30:39 17:35:22</td>
<td>"</td>
<td>10% cumulus (frames 5722-5728)</td>
</tr>
<tr>
<td>K - L</td>
<td>5729-5739</td>
<td>17:43:11 17:47:26</td>
<td>"</td>
<td>10-20% cumulus (frames 5729-5739)</td>
</tr>
</tbody>
</table>