FLIGHT SUMMARY REPORT

Flight #: 91-064
Date: 11 March 1991
Area(s) Covered: Utah

Investigator(s): Welch, S.D. School of Mines and Technology
Flight Request: 91L271

Aircraft #: 706
Julian Date: 070

SENSOR DATA

Accession #: ----- 04194
Sensor ID #: 099 036
Sensor Type: AVIRIS RC-10
Focal Length: ----- 6"
153.19 mm

Film Type: ----- High Definition
Aerochrome Infrared SO-131

Filtration: ----- cc.10B
Spectral Band: ----- 510-900 nm
f Stop: ----- 4
Shutter Speed: ----- 1/125
of Frames: ----- 17
% Overlap: ----- 60
Quality: ----- Excellent
Remarks:
Airborne Science and Applications Program

The Airborne Science and Applications Program (ASAP) is supported by three ER-2 high altitude Earth Resources Survey aircraft. These aircraft are operated by the High Altitude Missions Branch at NASA-Ames Research Center, Moffett Field, California. The ER-2s are used as readily deployable high altitude sensor platforms to collect remote sensing and in situ data on earth resources, celestial phenomena, atmospheric dynamics, and oceanic processes. Additionally, these aircraft are used for electronic sensor research and development and satellite investigative support.

The ER-2s are flown from various deployment sites in support of scientific research sponsored by NASA and other federal, state, university, and industry investigators. Data are collected from deployment sites in Kansas, Texas, Virginia, Florida, and Alaska. Cooperative international scientific projects have deployed the aircraft to sites in Great Britain, Australia, Chile, and Norway.

Photographic and digital imaging sensors are flown aboard the ER-2s in support of research objectives defined by the sponsoring investigators. High resolution mapping cameras and digital multispectral imaging sensors are utilized in a variety of configurations in the ER-2s' four pressurized experiment compartments. The following provides a description of the digital multispectral sensor used for data collection during this flight.

Airborne Visible and Infrared Imaging Spectrometer

The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) is the second in the series of imaging spectrometer instruments developed at the Jet Propulsion Laboratory (JPL) for earth remote sensing. This instrument uses scanning optics and four spectrometers to image a 614 pixel swath simultaneously in 224 contiguous spectral bands (0.4-2.4 μm).

AVIRIS parameters are as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFOV:</td>
<td>1 mrad</td>
</tr>
<tr>
<td>Ground Resolution:</td>
<td>66 feet (20 meters) at 65,000 feet</td>
</tr>
<tr>
<td>Total Scan Angle:</td>
<td>30°</td>
</tr>
<tr>
<td>Swath Width:</td>
<td>5.7 nmi (10.6 km) at 65,000 feet</td>
</tr>
<tr>
<td>Spectral Coverage:</td>
<td>0.41-2.45 μm</td>
</tr>
<tr>
<td>Pixels/Scan Line:</td>
<td>614</td>
</tr>
<tr>
<td>Number of Spectral Bands:</td>
<td>224</td>
</tr>
<tr>
<td>Digitization:</td>
<td>10-bits</td>
</tr>
<tr>
<td>Data Rate:</td>
<td>17 MBPS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spectrometer</th>
<th>Wavelength Range</th>
<th>Number of Bands</th>
<th>Sampling Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.41 - 0.70 μm</td>
<td>31</td>
<td>9.4 nm</td>
</tr>
<tr>
<td>2</td>
<td>0.68 - 1.27 μm</td>
<td>63</td>
<td>9.4 nm</td>
</tr>
<tr>
<td>3</td>
<td>1.25 - 1.86 μm</td>
<td>63</td>
<td>9.7 nm</td>
</tr>
<tr>
<td>4</td>
<td>1.84 - 2.45 μm</td>
<td>63</td>
<td>9.7 nm</td>
</tr>
</tbody>
</table>

All AVIRIS data is decommutated and archived at JPL and not currently available for public distribution. For further information contact Rob Green at Jet Propulsion Laboratory, 4800 Oak Grove Drive, Mail Stop 183-501, Pasadena, California 91109-8099.
CAMERA FLIGHT LINE DATA
FLIGHT NO. 91-064

<table>
<thead>
<tr>
<th>Check Points</th>
<th>Frame Numbers</th>
<th>Time (GMT-hr, min, sec)</th>
<th>Altitude, MSL feet/meters</th>
<th>Cloud Cover/Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7052</td>
<td>19:57:15</td>
<td>65000/19800</td>
<td>80% alto-cumulus and cirro-cumulus</td>
</tr>
<tr>
<td>B - C</td>
<td>7053-7055</td>
<td>20:10:30</td>
<td>70-90% alto-cumulus and cirro-cumulus</td>
<td></td>
</tr>
<tr>
<td>D - C</td>
<td>7056-7058</td>
<td>20:19:54</td>
<td>60-70% cirro-cumulus</td>
<td></td>
</tr>
<tr>
<td>B - C</td>
<td>7059-7061</td>
<td>20:30:54</td>
<td>90-100% cirro-cumulus</td>
<td></td>
</tr>
<tr>
<td>D - C</td>
<td>7062-7064</td>
<td>20:42:53</td>
<td>70-80% cirro-cumulus</td>
<td></td>
</tr>
<tr>
<td>E - F</td>
<td>7065-7068</td>
<td>21:32:08</td>
<td>Clear; dust storm on dry lake bed</td>
<td></td>
</tr>
</tbody>
</table>