FLIGHT SUMMARY REPORT

Flight Number: 10-918

Calendar/Julian Date: 13 May 2010 (133)

Sensor Package: Cirrus Digital Camera System (DCS)
Airborne Visible and Infrared Imaging Spectrometer (AVIRIS)

Area(s) Covered: Gulf Coast Oil Spill

Investigator(s): Leifer (UCSB) Aircraft: ER-2 #809

SENSOR DATA

Accession #: 05951

Sensor ID #: 148 099

Sensor Type: DCS AVIRIS

Focal Length: 50mm

Film Type: ___

Filtration: Wratten 12

Spectral Band: 510-990nm

f-Stop: 11

Shutter Speed: 1/500

of Frames: 81

% Overlap: 60%

Quality: Excellent

Remarks:
NASA Suborbital Science Program

The National Aeronautics and Space Administration maintains a variety of aircraft and sensor systems dedicated to the support of remote sensing research. Two Lockheed ER-2s (S-model U-2); two WB-57 high altitude aircraft; a DC-8; a Lockheed Orion P-3B; and the Altair unmanned aerial vehicle (supported by General Atomics) provide multi-level platforms for both NASA and investigator-owned sensors. Data are collected for the atmospheric, land, and ocean processes in support of the NASA Earth Science program, as well as for universities and other government agencies.

Additionally contracted aircraft from Department of Energy, and Twin Otter International provide remote sensing platforms for the program.

The NASA aircraft, located at Dryden Flight Research Center and Johnson Space Center, are used as test-beds for advanced sensor design and satellite simulation, as well as to support scientific and operational data collection campaigns. Numerous sensor systems are in use and under development by NASA, including multispectral imaging devices, a SAR system, and a suite of large-format metric cameras. All instruments are spectrally, spatially, and radiometrically calibrated on a routine basis. The aircraft themselves are equipped with navigation systems that continuously record GPS location and platform attitude data.

Airborne Visible and Infrared Imaging Spectrometer

The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) is the second in the series of imaging spectrometer instruments developed at the Jet Propulsion Laboratory (JPL) for earth remote sensing. This instrument uses scanning optics and four spectrometers to image a 614-pixel swath simultaneously in 224 contiguous spectral bands (0.4-2.4 µm).

AVIRIS parameters are as follows:

- IFOV: 1 mrad
- Ground Resolution: 66 feet (20 meters) at 65,000 feet
- Total Scan Angle: 34°
- Swath Width: 5.9 nautical mile (11 km) at 65,000 feet
- Spectral Coverage: 0.41-2.45 µm
- Pixels/Scan Line: 677
- Number of Spectral Bands: 224
- Digitization: 12-bits
- Data Rate: 20.4 MBPS

<table>
<thead>
<tr>
<th>Spectrometer</th>
<th>Range</th>
<th>Number of Bands</th>
<th>Sampling Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.41 - 0.70 µm</td>
<td>31</td>
<td>9.4 nm</td>
</tr>
<tr>
<td>2</td>
<td>0.68 - 1.27 µm</td>
<td>63</td>
<td>9.4 nm</td>
</tr>
<tr>
<td>3</td>
<td>1.25 - 1.86 µm</td>
<td>63</td>
<td>9.7 nm</td>
</tr>
<tr>
<td>4</td>
<td>1.84 - 2.45 µm</td>
<td>63</td>
<td>9.7 nm</td>
</tr>
</tbody>
</table>

All AVIRIS data is processed and archived at JPL. For further information contact Rob Green at Jet Propulsion Laboratory, 4800 Oak Grove Drive, Mail Stop 183-501, Pasadena, California 91109-8099. http://aviris.jpl.nasa.gov/
Cirrus Digital Camera System (DCS)

Cirrus Digital Systems provides the digital camera. It consists of a Hasselblad camera body with a Kodak camera back and CCD array. It can be configured to acquire either false color infrared or natural color imagery.

<table>
<thead>
<tr>
<th>Lens</th>
<th>Array Size</th>
<th>Array Width</th>
<th>Field of View (FOV)</th>
<th>Altitude (feet)</th>
<th>Ground Coverage</th>
<th>Nominal Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>50mm</td>
<td>4072 x 4072 (pixels)</td>
<td>36.72mm</td>
<td>40.3°</td>
<td>65000</td>
<td>7.9nm</td>
<td>3.5m</td>
</tr>
<tr>
<td>50mm</td>
<td>4072 x 4072 (pixels)</td>
<td>36.72mm</td>
<td>40.3°</td>
<td>45000</td>
<td>5.4nm</td>
<td>2.5m</td>
</tr>
<tr>
<td>50mm</td>
<td>4072 x 4072 (pixels)</td>
<td>36.72mm</td>
<td>40.3°</td>
<td>28000</td>
<td>3.4nm</td>
<td>1.5m</td>
</tr>
</tbody>
</table>

Note: Nominal resolution references the smallest target that can be imaged.

Airborne Sensor Facility

The Airborne Sensor Facility at NASA Ames Research Center web site:

http://asapdata.arc.nasa.gov/

Additional information regarding flight documentation to include archive searches may be obtained from the following:

Airborne Sensor Facility
MS 244-15
NASA Ames Research Center
Moffett Field, CA 94035
Telephone: (650)604-6252 (FAX 4987)
CAMERA FLIGHT LINE DATA
FLIGHT NO. 10-918

<table>
<thead>
<tr>
<th>Check Points</th>
<th>Frame Numbers</th>
<th>Time (GMT-hr, min, sec)</th>
<th>Altitude, MSL feet/meters</th>
<th>Heading / Line ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - B</td>
<td>5299-5310</td>
<td>15:40:07 / 15:45:25</td>
<td>65200/19880</td>
<td>95° / CAL-2-D4</td>
</tr>
<tr>
<td>C - D</td>
<td>5311-5336</td>
<td>15:55:32 / 16:06:33</td>
<td>65000/19820</td>
<td>86° / Line A</td>
</tr>
<tr>
<td>E - F</td>
<td>5337-5359</td>
<td>16:17:15 / 16:26:57</td>
<td>65500/19970</td>
<td>111° / Line B</td>
</tr>
<tr>
<td>G - H</td>
<td>5360-5379</td>
<td>16:36:33 / 16:44:56</td>
<td>65200/19880</td>
<td>140° / Line C</td>
</tr>
</tbody>
</table>